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The Ising model with long-range ferromagnetic interactions 
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U K  
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Abstract. A variational method based on the nearest-neighbour k ing  model is used to 
derive an expression for the low-temperature correlation function in the Ising model with 
long-range ferromagnetic interactions. Also by expanding the correlation function directly, 
we demonstrate that the characteristic power-law behaviour at large distances is irrelevant 
in the critical region, when above the marginal range of interaction. 

1. Introduction 

Ruelle (1968) proved that for the one-dimensional Ising model with Hamiltonian 
a 

= -c J(n)u,u,+fl  
1. 

where J (  n) 2 0, n = 1,2,3,  . . . , and MO = X;=, J (  n) is finite, no phase transition exists 
provided that MI = E:==, nJ( n )  is finite. For power-law potentials J (  n )  = J /  n'+rr,  this 
condition implies the absence of long-range order at all finite temperatures for U >  1, 
i.e. for interactions decaying faster than inverse square. 

Kac and Thompson (1969) conjectured that a phase transition does exist for 
0 < u s  1, but Dyson (1969) was only able to prove it for 0 < U < 1, leaving the borderline 
case U = 1 undecided. Cardy (1984) found a transition to occur for J (  n) = J /  n2, where 
the correlation length diverges according to In(,$/&) - r - ' ' * ,  where t = T /  T, -- 1, which 
is a strong singularity of the Kosterlitz-Thouless type (Kosterlitz 1974). 

Fisher et al ( 1972) investigated the d-dimensional model with isotropic potential 
J ( r )  - J/rd '" .  Using the momentum space RG, they analysed the stability of the 
long-range fixed point, and found that the following 'classical' or Gaussian exponents 
were exact for U < d/2:  

I ] = 2 - u  v =  l / v  y = l .  (2) 
On the long-range Gaussian border, u = d / 2 ,  the classical exponents in (2) have 
logarithmic corrections, and for d /2  < U < 2, Fisher et a1 performed expansions for 
the exponents in powers of ~ ' = 2 u - d  for fixed u 2 2  and in A u = u - d / 2  for fixed 
d. However the prediction of U = 2 as the margin of short-range behaviour is incon- 
sistent with what is known about the long-range Ising chain, and for d s 3 leads to an 
unexpected jump in the value of 7 across the margin. 
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Sak (1973) showed that the above problems could be resolved if the universality 
crossover occurs at U = 2 - qsR and not at U = 2. The discontinuity in q is removed, 
since qLR = 2 - CT = qsR at U = 2 - qSR. Moreover, in d = 1 where qSR = 1, a crossover 
is now correctly predicted at U = 1. Subsequently Bray (1986), in the context of the 
random field model with long-range exchange and/or long-range correlated random 
fields, has rederived the result U,,, = 2 - qSR for the pure long-range system, where we 
denote the marginal range by U,,,. Also, van Enter (1982) found the long range 
contribution to the energy in the X Y  model for d 3 3 to be unimportant for U > U,,, . 

We will show that the variational method based on the short-range Ising model 
(Takahashi 1981) can also predict the marginal interaction range. In addition, the 
low-temperature correlation function will be found to have a nearest-neighbour form 
with a modified correlation length. By performing a direct perturbation expansion of 
the nearest-neighbour correlation function, we will demonstrate that the long-range 
power-law part is irrelevant for potentials in the short-range universality class. 

The order of the paper is as follows. The free energy of the Ising chain is first 
expanded, and from it the low-temperature correlation function is derived by taking 
the derivative with respect to the long-range potential. The method is then generalised 
to the d-dimensional long-range model. We perform a direct expansion of the correla- 
tion function of the Ising chain, which enables us to demonstrate the existence of 
power-law correlations at large distances. These do not appear to have been studied 
extensively in magnets, but are nevertheless interesting features of the long-range 
model, and are relevant to the discussion of critical properties. The correlation function 
is expanded in d dimensions and used to examine the long-range contribution to the 
critical susceptibility, in analogy with work done by others on classical liquids. 

2. Variational method for the long-range king chain 

Following Takahashi (1981), we begin by writing the Hamiltonian of the long-range 
Ising chain in (1) as 

H = H,) + (H - HO) (3) 
where 

&' 

Ho = - 2 0  UPI+l 
I 

(4) 

is the exactly soluble nearest-neighbour Hamiltonian. The variational inequality can 
be applied in order to replace the true free energy F by the minimum with respect to 
Bo of Fo+(H-H0), .  Doing this leads to the following expression for f = F I N  as 
N + a :  

where 

fo= -p - '  ln(2 cosh p20). ( 6 )  
9, is given by 

D 

(1 - tanh2(Mo))(b0-  n = l  n J ( n )  tanh"'(p90)) = O  (7) 
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and the correlation length to has the nearest-neighbour form 

-1 
In tanh( @Bo) * 

to(B0) = 

The effective long-range correlation function is given by the nearest-neighbour correla- 
tion function 

C ( n )  = C o ( n )  = exp(-n/lo).  (9) 

The effects of J (  n) are therefore felt through $o and hence through eo, This complies 
with the standard definition of a correlation function 

af C ( n )  = -- 
a J (  n ) '  

Using our variational free energy ( 5 )  in equation ( lo) ,  we obtain C (  n )  = CO( n ) .  
An Ising model with power-law ferromagnetic interactions displays power-law 

correlations at sufficiently large distances. It is an important point, therefore, that our 
approximation gives only exponential correlations, although it is likely that these will 
be valid at low enough temperatures, since the model can then be mapped onto a kink 
or domain-wall mean-field theory, analogous to that of a nearest-neighbour chain. Just 
as 25 is the wall energy dividing two opposite domains in the nearest-neighbour chain, 
2B0 is the wall energy for the long-range model. We can express the definition of Bo 
(finite) from equation ( 7 )  as 

which is indeed the excitation energy of an isolated kink when lo >> 1. 
There is a phase transition for J ( n )  = J /n '  but not for J ( n )  = J /n '+" ,  a> 1. A test 

of the variational approximation is whether it can confirm this. Considering the 
expression for finite Bo with J ( n )  = J / n l ' " :  

z 1  

it can be seen that for a> 1 there is indeed no singularity in Bo and therefore none 
in to for T > 0. This is because for T > 0 ( P  < a) an upper bound on Bo is given by 

" 1  
n = l  n 

BolJ= c 7 a> 1 

which is finite. 

predicted from this method; we follow a procedure suggested by the referee. 
We consider the case a= 1 explicitly in order to find the transition temperature 

The free energy (equation ( 5 ) )  is given below for U = 1: 

By expandingf(P, Bo) in powers ofexp(-2PBo), for large PBo (see the appendix), we 
find: 

(15) lim f ( P ,  BO) = - J 5 ( 2 )  + (aBo+ 6 )  e ~ p ( - 2 P 9 ~ )  
$0-= 



2160 M J Wragg and G A Gehring 

where Q = 2 ( 2 p J  - l ) ,  b = p- ' (2pJ  - 1 - 2 p J  In 2), and 5 ( 2 )  =: 1.645 is the value of the 
Riemann zeta function, so that -J5(2) is the ground-state free energy density. 

The free energy has a minimum for B;o-. m provided that a > 0. For all a C 0, the 
minimum occurs for Bo finite, and there is thus a first-order transition. This method 
predicts 2pJ = 1, or kTc = 25, which compares more favourably with the result found 
by Nagle and Bonner (1970) of kTc= 1.6J, than the mean-field theory result of 
kT,- 3.25. (The numerical solution of these equations found by Takahashi (1981) 
failed to locate the first-order transition and gave kT, = 2.45.) It is interesting that this 
method which is based on the nearest-neighbour chain (which does not order) does 
lead to a prediction for T, at U = 1. It does not, however, agree with the exponents 
found by Cardy (1984), who used a scaling analysis. 

3. The variational method in d dimensions 

The variational free energy density in d dimensions can be expressed as 
X 

f = f o - A ( d )  1 J(r)Co(r)rd- '  dr+B;oCo(l) 
1 

where fo is the nearest-neighbour free energy density in d dimensions, J ( r )  is the 
isotropic interaction and CO( r) the nearest-neighbour correlation function. The factor 
rd-'  in the integrand relates to the d-dimensional surface area and A ( d )  represents 
the angular contribution to the spherical integral in d dimensions. 

the integral over J (  r )  becomes, near the 
critical point, 

Putting J( r) = J /  r d + u  for U 3 2 - 

constant + J rd+l+u-2+,,R d r  5: g(ri50) 

where the constant term depends only on the lattice spacing and the cutoff a, and the 
critical correlation function CO( r) = g( r/ 50)r-(d-2+"SR), where g( r/ eo) is the scaling 
function. The second term in (17) gives a contribution of 0 ( [ i d ~ i ' " - " m '  ). Hence the 
contribution of the long-range Hamiltonian ( HLR)O, to the variational free energy 
density is negligible in comparison with the short-range free energy density when 
U > U, = 2 - rlSR, but dominates for U < 2 - qSR, in agreement with Sak (1973), van 
Enter (1982) and Bray (1986). 

4. Expansion of the correlation function in the long-range chain 

Asymptotic power-law correlations have been proved to exist in the Ising model by 
Griffiths (1967a), in the Ising chain for all U > 0 at high temperatures by Naimnhanov 
(1979), and by Benfatto (1984) in continuous systems at all temperatures. The key 
question arising from the fact that power-law correlations exist is the following: 'How 
can this be reconciled with the analysis of Cardy (1984) which states that potentials 
J(n) - l/n'+", for U >  1, exhibit short-range critical behaviour, whereas we know 
correlations are only exponential in the nearest-neighbour model?' We will show that 
power-law correlations associated with potentials in the short-range universality class 
are irrelevant in the critical region, near Tc=O. 
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We can expand the correlation function for the Ising chain 

I = m  

and m is the arbitrary short-range cut-off of the long-range potential. The result is 

C ( n )  = ( U o U n ) O  

+ ( P ~ I ) O ( ~ O ~ , ~ ,  - (UoUnPH1)o 

+ S ( ( ~ O ~ " ( P H l ) ' ) O +  (U04O(PHI):, - ( ~ o ~ n ) o ( ( P H l ) 2 ) o  - ( ~ O ~ n P H , ) O ( P H I ) O )  

+ . . . .  (20) 

(21) 

where C o ( n )  = (a0a,},= exp(-n/tO) and to= -l/ln[tanh(PJ,,)]. We wish to investigate 
the power-law tails which show up at large distances, n / t o  >> 1, where C o ( n )  can be 
neglected. Now we can split terms of the form (a,a2a3u4) into products of pairwise 
averages ( U ~ U * ) ( U ~ U ~ ) ,  ( u ~ u ~ ) ( u , u ~ )  etc, by invoking the Griffiths inequality (Griffiths 
1967b) 

To O(PHl) only, 
C ( n = CO( n + P C Jl( j )  (((+O(+n(+,u,+J )o - ( ~ o u , , ) O ( ~ , ~ , + , ) o )  

1.J 

(U,U,(+kU,) 3 ('+,U, )( L+k(+l). (22) 
Doing this for ( u ~ u ~ u ~ u , + , ) ~  in (21) and taking J l ( j )  = Jl/j"" gives 

To proceed, we shall approximate summations over the I D  lattice by integrals, 

=PJ1  {x%Ixdxexp( -x !b )  1 Y  I exp(-lx+y-nl/to).  (24) 

The integrations are dominated by the regions within a range to of the spins uo and 
U,,, giving 

The result of expanding to O ( P H , )  is that the correlation function comprises a 
nearest-neighbour part and a term which decays like J , ( n )  at distances large compared 
with the nearest-neighbour correlation length. We can compare this result, derived on 
the physical basis of correlated regions of spins interacting over large distances through 
the long-range potential J1( n ) ,  with the formal expansion (following Brout 1965) 

C ( n )  = C o ( n ) + P J , ( n ) ( x o / P ) '  
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where xo is the nearest-neighbour zero-field susceptibility. Our approximate expression 
in (25) is qualitatively consistent with the first two terms of (26), since at high 
temperatures the susceptibility ,yo = P.$o. 

The significance of the long-range correlations depends on their contribution to 
thermodynamic functions. Let us apply the definition of susceptibility 

ot 

x = P [  C ( n ) d n  (27) 

to find the low-temperature (critical) susceptibility as a function of the diverging 
correlation length to. This leads to 

where p >> 1 is a parameter determining the short-distance cut-off of the long-range 
contribution to the correlation function. There is no real physical cut-off at n = p t o ,  
but this distance does mark the limit of our derivation. It can easily be seen, however, 
that the unknown long-range correlation function up to n = p k 0  would not make a 
contribution to the susceptibility of more than the order of to. Performing the integral 
in (28) leads to 

where we have substituted 

Formally, we can write x( to) = xSR( to) + x L R (  to), where the ratio of long-range to 
short-range contributions to the critical susceptibility is given by 

For a > 1, xLR([O)  is irrelevant in comparison to xSR(tO), and therefore x - to, in accord 
with short-range scaling. 

5. Correlation function expansion in d dimensions 

Following the approach in one dimension, it is possible to make an extension to any 
d, as we did for the variational approximation. 

In one dimension the method was based upon spin clusters of length to interacting 
through a l /nl '" potential at distances large compared with to. Similarly in general 
dimension d, we can take clusters of volume O(5:) to be interacting through a l / rdt"  
potential at distances large compared with to. The analogue of (24) is 

C ( r) - CO( r )  = A ( d  )PJ1 

where 
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using our previous notation. As t o +  30, the first term in (33) of O ( a d )  can be neglected 
in comparison with the second term, which is of order &"SR. The third term is small, 
and so can also be neglected. Therefore from the d-dimensional susceptibility which 
we define as 

x = P  jx C ( r ) r d - '  d r  (34) 
I 

we find that 

Hence the ratio of long-range to short-range contributions to the d-dimensional critical 
susceptibility is given by 

where um = 2 - vsR defines the marginal range. As we expect, the long-range contribu- 
tion to the critical susceptibility is irrelevant for U > U, and marginal at U = um. Our 
reasoning is the magnetic analogue of that of Kayser and RavechC (1984), who 
investigated the influence on critical scaling of the weak but long-range ( l / r 6 )  inter- 
molecular interactions in neutral fluids. 
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Appendix 

The expansion of (14) in powers of exp(-2P2") is performed for the three terms 
separately; the first and third terms are trivial: 

- P In 2 cosh(P20) +20 t anh(P9d 

The second term can be re-expressed as an integral: 
E - 9 n - P - '  exP(-2P9n)+%o[1-2 e x ~ ( - 2 P 2 ~ ) I + O ( e x p ( - 4 P ~ o ) ) .  ( A l )  

1 
dx- ln(1-x)  I' = J I,' dx In( 1 - x)  - J 

I-ranhipSo,  X X 
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